3. Fonctions Mesurables

Exercice 1. Soit (f_n) une suite de fonctions mesurables d'un espace mesurable (E, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

(i) Montrer que les fonctions suivantes sont mesurables :

$$\inf_{n\in\mathbb{N}} f_n, \quad \sup_{n\in\mathbb{N}} f_n, \quad \liminf_{n\to\infty} f_n, \quad \limsup_{n\to\infty} f_n.$$

(ii) En déduire que si (f_n) converge simplement vers une fonction f, alors f est mesurable.

Exercice 2. Soient f, g deux fonctions mesurables d'un espace mesurable (E, A) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Montrer que les ensembles suivants sont mesurables :

$$A = \{f < g\} = \{x \in E, \ f(x) < g(x)\}, \ B = \{f \le g\}, \ C = \{f = g\}.$$

En déduire que f + g est mesurable.

Exercice 3. Soit (f_n) une suite de fonctions mesurables d'un espace mesurable (E, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Montrer que l'ensemble suivant est un élément de la tribu \mathcal{A} :

$$A = \{x \in E, (f_n(x))_{n \in \mathbb{N}} \text{ converge}\}.$$

Exercice 4 (Quelques cas particuliers de fonctions mesurables.). Soit (E, A) un espace mesurable.

- (i) Soit $A \subset E$. Montrer que $\mathbb{1}_A$ est mesurable si et seulement si $A \in \mathcal{A}$.
- (ii) Soit (E_k) une partition dénombrable de E qui engendre A. Montrer qu'une fonction $f: E \to \mathbb{R}$ est mesurable si et seulement si elle est constante sur chacun des E_k .
- (iii) L'inverse d'une bijection mesurable est-elle toujours mesurable?

Exercice 5. Soit (f_n) une suite de fonctions mesurables entre espaces mesurables (E, A) et (F, B).

- (i) Soit $(E_n) \in \mathcal{A}^{\mathbb{N}}$ une partition de E. Montrer que $f = \sum_{n=0}^{+\infty} f_n \mathbb{1}_{E_n}$ est mesurable.
- (ii) Soit $N:(E,\mathcal{A})\to(\mathbb{N},\mathcal{P}(\mathbb{N}))$ mesurable. Montrer que la fonction suivante est mesurable :

$$g: x \in E \mapsto f_{N(x)}(x).$$

Exercice 6. Montrer qu'une application $f: \mathbb{R} \to \mathbb{R}$ monotone est mesurable.

Exercice 7 (Théorème d'Egoroff.). Soit (E, \mathcal{A}, μ) espace mesuré tel que $\mu(E) < +\infty$. Soit (f_n) une suite de fonctions mesurables de (E, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.

(i) Soit C l'ensemble de convergence de (f_n) (mesurable d'après un exercice précédent). Supposons que $\mu(E \setminus C) = 0$. Notons :

$$E_n^k = \bigcap_{i > n} \left\{ |f_i - f| \le \frac{1}{k} \right\}.$$

Montrer que pour tout $\varepsilon > 0$ et tout $k \in \mathbb{N}^*$, il existe $n_{k,\varepsilon} \in \mathbb{N}^*$ tel que $\mu\left(E \setminus E_{n_{k,\varepsilon}}^k\right) < \frac{\varepsilon}{2^k}$.

- (ii) En déduire que, pour tout $\varepsilon > 0$, il existe $E_{\varepsilon} \in \mathcal{A}$ tel que (f_n) converge uniformément vers f sur E_{ε} et $\mu(E \setminus E_{\varepsilon}) < \varepsilon$.
- (iii) Que dire lorsque $\mu(E) = +\infty$?

Exercice 8. Soit (E, \mathcal{A}, μ) espace mesuré. Soit (f_n) une suite de fonctions mesurables de (E, \mathcal{A}) dans $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. On dit que (f_n) converge en mesure vers f si :

$$\forall \varepsilon > 0, \lim_{n \to \infty} \mu\left(\{|f_n - f| > \varepsilon\}\right) \xrightarrow[n \to \infty]{} 0.$$

Montrer que si $\mu(E) < +\infty$, alors la convergence μ -presque partout implique la convergence en mesure. Montrer que si (f_n) converge en mesure vers f, alors (f_n) converge μ -presque partout vers f à extraction près.